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An Interpolation Formula for Harmonic Functions
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1. INTRODUCTION AND RESULTS

Let u(x, y) be a harmonic function in R2. We call u(x, y) an even function
ifu(x, y) = u(-x, -y) and an odd function ifu(x, y) = -u(-x, -y). In [2],
Boas proved the following uniqueness theorem:

THEOREM A. If u(x, y) is a real-valued entire harmonic function of ex
ponential type less than 17 and u(m, 0) = u(m cos lX, m sin lX) = 0, for m = 0,
± I, ±2, ... , then u(x, y) = 0 unless lX is a rational multiple of 17.

In case lX = 17/2, the theorem (without "unless...") fails; consider the
functions xy and sinh x sin y. However, since these functions are even, it is
possible that it might still hold when u is an odd function. This is in fact
the case and we can actually construct the function u(x, y) from its values
at the lattice points (0, n) and (n, 0), n = 0, ±I,... , if {u(n, O)} and {u(O, n)}
are in lp. For the case when the lattice points lie on parallel lines, see [I, 2, 4].

THEOREM I. Let u(x, y) be a real-valued odd entire harmonic function
ofexponential type less than 17. Let u(m, 0) = u(O, m) = 0 for all integers m.
Then u(x, y) vanishes identically.

THEOREM 2. Let u(x, y) be a real-valued odd entire harmonic function of
exponential type less than or equal to 17 such that the series L:~-a:> I u(O, n)IP
and L:~-a:> I u(n. 0)[ p are convergent, where I :':( p < 00. Then

if)

u(x, y) = L u(n, 0) w·nCx, y) + L u(O, n) wn(y, x), (l)
n=-oo n=-O'J

where

w (x ) = (- I)n n[(x2 - y2 - n2) cosh 17Y sin 17X + 2xy sinh 17Y cos 17X]
n ,y 17[y2 + (x - n)2][y2 + (x + n)2]

and the series converge uniformly on every compact subset of R2.
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COROLLARY 1. Let u(x, y) be a real-valued harmonic function of ex
ponential type less than 7T such that u(O, n) = u(n, 0) = O. Then u(x, y) is even.

COROLLARY 2. Let u(x, y) be a real-valued odd harmonic function of
exponential type less than or equal to 7T. Then u(x,O) and u(O, y) are in
U(-oo 00) if and only if{u(n, O)} and {u(O, n)} are in 12•

2. PROOFS OF THEOREMS AND CORROLLARIES

To prove Theorem 1, we let vex, y) be a harmonic function conjugate to
u so thatf(x + iy) = u(x, y) + iv(x, y) is an odd entire function of exponen
tial type less than 7T. This is possible by Caratheodory's inequality [2,3].
We define F(z) = f(iz) + f(iz). As F(z) vanishes at (n,O) for all integers,
F(z) is the zero function by Carlson's theorem. Hence we have

f(iz) = -f(iz),

or f( -z) = -fez).

Similarly, we can conclude that

fez) + fez) = 0.

(2)

(3)

Now it follows from (2) and (3) that fez) is even, which implies that u(x, y)
is even and hence vanishes identically.

To prove Theorem 2, we observe that

and

Wn(x, y) = -wn(-x, -y),

wn(O, y) = 0,

( 0) = sin 7T(X - n) _ sin 7T(X + n)
Wn x, 27T(X _ n) 27T(X + n)

Wn(x, y) = OOln)

(4)

(5)

(6)

(7)

uniformly in every compact subset of R2 as n tends to infinity. Thus, the
series in (1) converge uniformly, and by Schwarz's inequality and (7), the
rate of convergence is of order 001 v17)q-l. An easy way to show that wn(x, y)
is harmonic is from the following equality:

WnCx, y) = -4
1 I" cosh ty(eit(x-n) - e-it<x+n» dt. (8)
7T _"
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Now, we let
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00 00

w(x, y) = I u(n, 0) Wn(X, y) + I u(O, n) Wn(Y, X),
'n=-co n=-oo

and F(z) be an entire function of exponential type less than or equal to 7T

such that Re F = u(x, y). Then, we have

u(X, 0) = ~ F(x) = 2
1
7T n~oo sin ;~ -;; n) F(n)

= ~ f sin 7T(X - n) u(n, 0)
7T X - nn=-oo

= _1_ f sin 7T(X - n) [u(n 0) _ u(-n 0)]
27T n~-oo X - n ' ,

= _1_ f [Sin 7T(X - n) _ sin 7T(X + n)] u(n 0).
27T n~-<x; x - n x + n '

From (5) and (6), we obtain

<X; 00

u(x,O) = I u(n,O) wn(x, 0) + I u(O, n) wn(O, y) = W(X, 0).
n=-oo

Similarly, we can conclude that

n=-oo

u(O, y) = w(O, y).

Let h(z) be an odd entire function such that Re h = u - w. We consider
H(z) = h(iz) + h(iz). Then H(iy) = °for all real y. Thus, h(iz) = -h(iz).
Similarly, we have h(z) = -h(z), and hence, u(x, y) - w(x, y) =°as in
the proof of Theorem I.

Corollary I follows trivially from Theorem I by considering the odd part
of u, i.e., [u(x, y) - u(-x, -y)]/2.

To prove Corollary 2, we letj(z) be an entire function such that Ref = u
and let F(z) = j(iz) + j(iz). It follows from Paley-Wiener's Theorem
(cf. [2]) that

F(z) = r eiztep(t) dt
-1T

for some ep E V[ -7T, 7T]. Hence,

f u2(0, n) =! f pen) = !r I ep(t)1 2 dt < 00.
n=-CXJ n=-o:) -17
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n=-oo

On the other hand, if L:=-oo [u2(0, n) + u2(n, 0)] is convergent, then we have
from (5) and (6) that

00 sin 7T(X - n)
u(x, 0) = 2 L u(n, 0) ( ).7Tx-nn=-,x

As the sequence ([sin 7T(X - n)]/[7T(X - n)]} is an orthonormal sequence in
V( - 00, 00), we have

roo Iu(x, 0)1 2 dx = 4 L [u(n,O)]2 < 00 .
.... -Cf;

3. FINAL REMARK

It can be seen from (8) that the construction of wn(x, y) is motivated by
the well-known image method for constructing Green's function for the
Laplace operator (cf. [5]). We conjecture that for general Q: = q/p, this
method can be extended to give an interpolation formula analogous to (1)
for a certain class of nonsymmetric harmonic functions for which a unique
ness theorem holds. Also, the interpolation formula will be a sum of a
certain series over some reflected images of (x, y) by the straight lines
y = x tan k/p 7T, k = 0, 1,... , p - 1. Finally, we would like to mention an
application of (1). Suppose u(x, y) satisfies the hypothesis of Theorem 2,
then the harmonic conjugate v of u can be written as follows:

v(x, y) = L u(n, 0) vn(.,.., y) - I u(O, n) Vn(Y, x),
n=-oo n=-oo

where

v (x ) = (_l)n n[(x2 - y2 - n2) sinh TTY cos TTX - 2xy cosh TTY sin 7TX]
n ,y 7T[(X _ n)2 + y2][(X + n)2 + y2]
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