JOURNAL OF APPROXIMATION THEORY 15, 50--53 (1975)

An Interpolation Formula for Harmonic Functions
CHIN-HUNG CHING*

Communicated by Oved Shisha

1. INTRODUCTION AND RESULTS

Let u(x, y) be a harmonic function in R%. We call #(x, y) an even function
ifu(x, y) = u(—x, —y)and an odd function if u(x, y) = —u(—x, —y). In[2],
Boas proved the following uniqueness theorem:

THEOREM A. If u(x, y) is a real-valued entire harmonic function of ex-
ponential type less than = and u(m, 0) = u(m cos a, msin o) = 0, for m = 0,
+1, +2,..., then u(x, y) = 0 unless o is a rational multiple of .

In case o = 7/2, the theorem (without “‘unless...”’) fails; consider the
functions xy and sinh x sin y. However, since these functions are even, it is
possible that it might still hold when u is an odd function. This is in fact
the case and we can actually construct the function u(x, y) from its values
at the lattice points (0, ») and (n, 0), n = 0, +1,..., if {u(n, 0)} and {u(0, n)}
are in /7. For the case when the lattice points lie on parallel lines, see [1, 2, 4].

THEOREM 1. Let u(x,y) be a real-valued odd entire harmonic function
of exponential type less than w. Let u(m, 0) = u(0, m) = O for all integers m.
Then u(x, y) vanishes identically.

THEOREM 2. Let u(x, y) be a real-valued odd entire harmonic function of
exponential type less than or equal to m such that the series Y _ . | u(0, n)|?
and Y. | u(n. 0)|? are convergent, where 1 < p < . Then

€L

wx ) = Y um 0w y) - S (0, m) wa(y, 1), )

N=—% N=-—-0

where

(—1)" n[(x® — y% — n?) cosh 7y sin 7rx + 2xp sinh 7y cos 7x]
7[y* + (x — nPlly? + (x + n)?]

wa(X, y) =

and the series converge uniformly on every compact subset of RE.

* Deceased; formerly of The Department of Mathematics, University of Melbourne,
Parkville, Victoria, Australia, 3052,

50

Copyright © 1975 by Academic Press, Inc.
All rights of reproduction in any form reserved.



HARMONIC FUNCTIONS 51

CoROLLARY 1. Let u(x,y) be a real-valued harmonic function of ex-
ponential type less than = such that u(0, n) = u(n, 0) = 0. Then u(x, y) is even.

CoROLLARY 2. Let u(x,y) be a real-valued odd harmonic function of
exponential type less than or equal to =. Then u(x,0) and u(0, y) are in
L(— o0 o) if and only if {u(n, 0)} and {u(0, n)} are in I2.

2. Proors OF THEOREMS AND CORROLLARIES

To prove Theorem 1, we let v(x, y) be a harmonic function conjugate to
u so that f(x + iy) = u(x, ¥) + iv(x, y) is an odd entire function of exponen-
tial type less than «r. This is possible by Carathéodory’s inequality [2, 3].
We define F(z) = f(iz) 4 f(iz). As F(z) vanishes at (n, 0) for all integers,
F(z) is the zero function by Carlson’s theorem. Hence we have
fliz) = —f(i2),
or  f(—2)= —f(@.

Similarly, we can conclude that

f@+f@ =o. €)

Now it follows from (2) and (3) that f(z) is even, which implies that u(x, y)
is even and hence vanishes identically.
To prove Theorem 2, we observe that

@

wn(x, y) = —W"(*“x, _‘y)’ (4)
wa(0, ) = 0, (5)

_sinm(x —n)  sinw(x +n)
walx, 0) = 2a(x —n)  2a(x + n) ©)

and
Wa(x, y) = O(1/n) 9

uniformly in every compact subset of R? as n tends to infinity. Thus, the
series in (1) converge uniformly, and by Schwarz’s inequality and (7), the
rate of convergence is of order 0(1/v/n)*X. An easy way to show that w,(x, )
is harmonic is from the following equality:

Wa(x, ) = 4—1#- fﬁ cosh ty(eitte-m — e-itta+my gy, (®)
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Now, we let

o0

W) = Y 0)walx, ) £ Y w0, 7) waly, ),

N=—w0 N=—a
and F(z) be an entire function of exponential type less than or equal to =
such that Re F = u(x, y). Then, we have

u(x, 0) = 15 F(x) = =— sin 7(x —

)
3
i
i s
8
e
x

=5 ¥ ﬂ‘l(f—%’l fu(n, 0) — u(—n, 0)]

_ L i [sin a(x —n) sinw(x + n)] u(n, 0).

27 X —n xX-+n

N=—0oC

From (5) and (6), we obtain

«©

u(x,0) = Y u(n,0)wux,0) + i u(0, n) w,(0, y) = w(x, 0).

N=—0as N=—00C

Similarly, we can conclude that

u(0, y) = w(0, y).

Let A(z) be an odd entire function such that Re A = u — w. We consider
H(z) = h(iz) + h(iz). Then H(iy) = O for all real y. Thus, h(iz) = —h(iz).
Similarly, we have A(z) = —A(z), and hence, u(x,y) — w(x,y) =0 as in
the proof of Theorem 1.

Corollary 1 follows trivially from Theorem 1 by considering the odd part
of u, i.e., [u(x, y) — u(—x, —»))/2.

To prove Corollary 2, we let f(z) be an entire function such that Re f = u
and let F(z) = f(iz) + f(iz). It follows from Paley-Wiener’s Theorem
(cf. [2]) that

F) = [ et(e) de

for some ¢ € L}, w]. Hence,

0

S w0m =1y Fo)=1[ 140rd < .

n=—w N=—aw
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On the other hand, if 3__, [#%(0, n) + u2(n, 0)] is convergent, then we have
from (5) and (6) that

u(x,0) = 2 ; ————Sir;(’;(x_ “n)")

As the sequence {[sin #(x — n)]/[#(x — n)]} is an orthonormal sequence in
L*(— 0, ), we have

[ 1uxopzdx =4 5 w0 < o

- Ti=—00

3. FINAL REMARK

It can be seen from (8) that the construction of w,(x, y) is motivated by
the well-known image method for constructing Green’s function for the
Laplace operator (cf. [5]). We conjecture that for general o = g/p, this
method can be extended to give an interpolation formula analogous to (1)
for a certain class of nonsymmetric harmonic functions for which a unique-
ness theorem holds. Also, the interpolation formula will be a sum of a
certain series over some reflected images of (x,y) by the straight lines
y=xtank/pn, k =0,1,..,p — 1. Finally, we would like to mention an
application of (1). Suppose u(x, y) satisfies the hypothesis of Theorem 2,
then the harmonic conjugate v of ¥ can be written as follows:

w0 ®©

oix,y) = ¥ ulm0)valx,y) — 3 w0, n) vy, %),

N=--00 N==0
where

(—1D” nl(x2 — ¥ — #?) sinh 7y cos 7x — 2xy cosh 7y sin 1rx]
m[(x — n) + ¥Il(x + n)* + »?]

Un(x3 y) =
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