An Interpolation Formula for Harmonic Functions

Chin-Hung Ching*
Communicated by Oved Shisha

1. Introduction and Results

Let $u(x, y)$ be a harmonic function in R^{2}. We call $u(x, y)$ an even function if $u(x, y)=u(-x,-y)$ and an odd function if $u(x, y)=-u(-x,-y)$. In [2], Boas proved the following uniqueness theorem:

Theorem A. If $u(x, y)$ is a real-valued entire harmonic function of exponential type less than π and $u(m, 0)=u(m \cos \alpha, m \sin \alpha)=0$, for $m=0$, $\pm 1, \pm 2, \ldots$, then $u(x, y)=0$ unless α is a rational multiple of π.

In case $\alpha=\pi / 2$, the theorem (without "unless...") fails; consider the functions $x y$ and $\sinh x \sin y$. However, since these functions are even, it is possible that it might still hold when u is an odd function. This is in fact the case and we can actually construct the function $u(x, y)$ from its values at the lattice points $(0, n)$ and $(n, 0), n=0, \pm 1, \ldots$, if $\{u(n, 0)\}$ and $\{u(0, n)\}$ are in l^{p}. For the case when the lattice points lie on parallel lines, see [1, 2, 4].

Theorem 1. Let $u(x, y)$ be a real-valued odd entire harmonic function of exponential type less than π. Let $u(m, 0)=u(0, m)=0$ for all integers m. Then $u(x, y)$ vanishes identically.

Theorem 2. Let $u(x, y)$ be a real-valued odd entire harmonic function of exponential type less than or equal to π such that the series $\sum_{n=-\infty}^{\infty}|u(0, n)|^{p}$ and $\sum_{n=-\infty}^{\infty}|u(n, 0)|^{p}$ are convergent, where $1 \leqslant p<\infty$. Then

$$
\begin{equation*}
u(x, y)=\sum_{n=-\infty}^{\infty} u(n, 0) w_{n}(x, y)+\sum_{n=-\infty}^{\infty} u(0, n) w_{n}(y, x) \tag{1}
\end{equation*}
$$

where

$$
w_{n}(x, y)=\frac{(-1)^{n} n\left[\left(x^{2}-y^{2}-n^{2}\right) \cosh \pi y \sin \pi x+2 x y \sinh \pi y \cos \pi x\right]}{\pi\left[y^{2}+(x-n)^{2}\right]\left[y^{2}+(x+n)^{2}\right]}
$$

and the series converge uniformly on every compact subset of R^{2}.

* Deceased; formerly of The Department of Mathematics, University of Melbourne, Parkville, Victoria, Australia, 3052.

Corollary 1. Let $u(x, y)$ be a real-valued harmonic function of exponential type less than π such that $u(0, n)=u(n, 0)=0$. Then $u(x, y)$ is even.

Corollary 2. Let $u(x, y)$ be a real-valued odd harmonic function of exponential type less than or equal to π. Then $u(x, 0)$ and $u(0, y)$ are in $L^{2}(-\infty \infty)$ if and only if $\{u(n, 0)\}$ and $\{u(0, n)\}$ are in l^{2}.

2. Proofs of Theorems and Corrollaries

To prove Theorem 1, we let $v(x, y)$ be a harmonic function conjugate to u so that $f(x+i y)=u(x, y)+i v(x, y)$ is an odd entire function of exponential type less than π. This is possible by Carathéodory's inequality [2,3]. We define $F(z)=f(i z)+\overline{f(i \bar{z})}$. As $F(z)$ vanishes at $(n, 0)$ for all integers, $F(z)$ is the zero function by Carlson's theorem. Hence we have

$$
\begin{align*}
f(i z) & =-\overline{f(i \bar{z})} \tag{2}\\
\text { or } \quad f(-z) & =-\overline{f(\bar{z})}
\end{align*}
$$

Similarly, we can conclude that

$$
\begin{equation*}
f(z)+\overline{f(\bar{z})}=0 . \tag{3}
\end{equation*}
$$

Now it follows from (2) and (3) that $f(z)$ is even, which implies that $u(x, y)$ is even and hence vanishes identically.

To prove Theorem 2, we observe that

$$
\begin{align*}
& w_{n}(x, y)=-w_{n}(-x,-y) \tag{4}\\
& w_{n}(0, y)=0 \tag{5}\\
& w_{n}(x, 0)=\frac{\sin \pi(x-n)}{2 \pi(x-n)}-\frac{\sin \pi(x+n)}{2 \pi(x+n)} \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
w_{n}(x, y)=O(1 / n) \tag{7}
\end{equation*}
$$

uniformly in every compact subset of R^{2} as n tends to infinity. Thus, the series in (1) converge uniformly, and by Schwarz's inequality and (7), the rate of convergence is of order $0(1 / \sqrt{n})^{q-1}$. An easy way to show that $w_{n}(x, y)$ is harmonic is from the following equality:

$$
\begin{equation*}
w_{n}(x, y)=\frac{1}{4 \pi} \int_{-\pi}^{\pi} \cosh t y\left(e^{i t(x-n)}-e^{-i t(x+n)}\right) d t . \tag{8}
\end{equation*}
$$

Now, we let

$$
w(x, y)=\sum_{n=-\infty}^{\infty} u(n, 0) w_{n}(x, y)+\sum_{n=-\infty}^{\infty} u(0, n) w_{n}(y, x)
$$

and $F(z)$ be an entire function of exponential type less than or equal to π such that $\operatorname{Re} F=u(x, y)$. Then, we have

$$
\begin{aligned}
u(x, 0)=\frac{1}{2} F(x) & =\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \frac{\sin \pi(x-n)}{x-n} F(n) \\
& =\frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{\sin \pi(x-n)}{x-n} u(n, 0) \\
& =\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \frac{\sin \pi(x-n)}{x-n}[u(n, 0)-u(-n, 0)] \\
& =\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty}\left[\frac{\sin \pi(x-n)}{x-n}-\frac{\sin \pi(x+n)}{x+n}\right] u(n, 0) .
\end{aligned}
$$

From (5) and (6), we obtain

$$
u(x, 0)=\sum_{n=-\infty}^{\infty} u(n, 0) w_{n}(x, 0)+\sum_{n=-\infty}^{\infty} u(0, n) w_{n}(0, y)=w(x, 0)
$$

Similarly, we can conclude that

$$
u(0, y)=w(0, y)
$$

Let $h(z)$ be an odd entire function such that $\operatorname{Re} h=u-w$. We consider $H(z)=h(i z)+\overline{h(i \bar{z})}$. Then $H(i y)=0$ for all real y. Thus, $h(i z)=\overline{-h(i \bar{z})}$. Similarly, we have $h(z)=\overline{-h(\bar{z})}$, and hence, $u(x, y)-w(x, y) \equiv 0$ as in the proof of Theorem 1.

Corollary 1 follows trivially from Theorem 1 by considering the odd part of u, i.e., $[u(x, y)-u(-x,-y)] / 2$.

To prove Corollary 2 , we let $f(z)$ be an entire function such that $\operatorname{Re} f=u$ and let $F(z)=f(i z)+\overline{f(i z)}$. It follows from Paley-Wiener's Theorem (cf. [2]) that

$$
F(z)=\int_{-\pi}^{\pi} e^{i z t} \phi(t) d t
$$

for some $\phi \in L^{2}[-\pi, \pi]$. Hence,

$$
\sum_{n=-\infty}^{\infty} u^{2}(0, n)=\frac{1}{4} \sum_{n=-\infty}^{\infty} F^{2}(n)=\frac{1}{4} \int_{-\pi}^{\pi}|\phi(t)|^{2} d t<\infty
$$

On the other hand, if $\sum_{n=-\infty}^{\infty}\left[u^{2}(0, n)+u^{2}(n, 0)\right]$ is convergent, then we have from (5) and (6) that

$$
u(x, 0)=2 \sum_{n=-\infty}^{\infty} u(n, 0) \frac{\sin \pi(x-n)}{\pi(x-n)}
$$

As the sequence $\{[\sin \pi(x-n)] /[\pi(x-n)]\}$ is an orthonormal sequence in $L^{2}(-\infty, \infty)$, we have

$$
\int_{-\infty}^{\infty}|u(x, 0)|^{2} d x=4 \sum_{n=-\infty}^{\infty}[u(n, 0)]^{2}<\infty
$$

3. Final Remark

It can be seen from (8) that the construction of $w_{n}(x, y)$ is motivated by the well-known image method for constructing Green's function for the Laplace operator (cf. [5]). We conjecture that for general $\alpha=q / p$, this method can be extended to give an interpolation formula analogous to (1) for a certain class of nonsymmetric harmonic functions for which a uniqueness theorem holds. Also, the interpolation formula will be a sum of a certain series over some reflected images of (x, y) by the straight lines $y=x \tan k / p \pi, k=0,1, \ldots, p-1$. Finally, we would like to mention an application of (1). Suppose $u(x, y)$ satisfies the hypothesis of Theorem 2, then the harmonic conjugate v of u can be written as follows:

$$
v(x, y)=\sum_{n=-\infty}^{\infty} u(n, 0) v_{n}(x, y)-\sum_{n=-\infty}^{\infty} u(0, n) v_{n}(y, x)
$$

where

$$
v_{n}(x, y)=\frac{(-1)^{n} n\left[\left(x^{2}-y^{2}-n^{2}\right) \sinh \pi y \cos \pi x-2 x y \cosh \pi y \sin \pi x\right]}{\pi\left[(x-n)^{2}+y^{2}\right]\left[(x+n)^{2}+y^{2}\right]}
$$

References

1. K. F. Andersen, On the representation of harmonic functions by their values on lattice points, to appear.
2. R. P. Boas, Jr., A uniqueness theorem for harmonic functions, J. Approximation Theory 5 (1972), 425-427.
3. R. P. Boas, Jr., "Entire Functions," Academic Press, New York, 1954.
4. C. H. Ching and C. K. Chui, A representation formula for harmonic functions, Proc. Amer. Math. Soc. 39 (1973), 349-352.
5. R. Courant and D. Hilbert, "Methods of Mathematical Physics," Vol. II, WileyInterscience, New York, 1961.
